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Resumo

A utilização de algoritmos genéticos na engenharia depende da sua capaci-
dade de navegar de forma eficiente por espaços de projeto complexos em
direção a soluções ótimas.O seu sucesso depende fortemente da função
avaliadora escolhida, que avalia cada solução possível. Quando computa-
cionalmente caras, essas avaliações podem atrapalhar significativamente a
velocidade do algoritmo. Esta tese investiga a aplicação inovadora de mod-
elos de Machine Learning Informado por Física como funções avaliadoras
dentro de algoritmos genéticos para otimizar sistemas mecânicos dinâmicos.
Embora o treinamento não seja trivialmente barato, esses modelos, uma
vez treinados, fornecem uma avaliação rápida de cada solução. Treinar os
modelos com rapidez suficiente para que a avaliação rápida valha o custo do
treinamento é um desafio porque uma cuidadosa seleção de hiperparâmet-
ros é necessária. Para investigar esta técnica, otimizamos vários sistemas
mecânicos com algoritmo genético com duas abordagens para avaliar a qual-
idade de cada solução: Integração Explícita no Tempo e Modelos de Machine
Learning Informados por Física. Nossos resultados demonstram que - com
hiperparâmetros apropriados - usar os modelos dentro do Algoritmo Genético
pode levar a uma convergência significativamente mais rápida e soluções
de qualidade comparável ou mesmo superior em comparação com métodos
tradicionais. Todas as otimizações foram realizadas com um software (de-
senvolvido pelo autor) que cria e treina automaticamente os modelos para
problemas arbitrários. Todo o código fonte está disponível em um repositório
público.
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Abstract

The usage of genetic algorithms in engineering hinges on their ability to effi-
ciently navigate complex design spaces towards optimal solutions. However,
their success relies heavily on the chosen fitness function, which evaluates
each candidate solution. When computationally expensive, these evaluations
can significantly hamper the algorithm’s speed. This thesis investigates the
novel application of Physics-Informed Machine Learning models as fitness
evaluators within genetic algorithms for optimizing dynamic mechanical
systems. They’re not trivially inexpensive to train but, once trained, these
models provide rapid evaluation of candidate solutions. Training the models
quickly enough so that the rapid evaluation is worth the cost of the training
is challenging because a careful selection of hyperparameters is necessary. To
investigate this technique, we optimized multiple mechanical systems with ge-
netic algorithm with two approaches to evaluate the fitness of each candidate
solution: Explicit Time Integration and Physics Informed Machine Learning
Models. Our findings demonstrate that - with appropriate hyperparameters -
using the models within the Genetic Algorithm can lead to significantly faster
convergence and solutions of comparable or even superior quality compared
to traditional methods. All the optimizations were performed with a software
(developed by the author) that automatically creates and trains the models
for arbitrary problems. All the source code is available in a public repository.
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How to read this document

Source Code

All of this work’s source code (including all images, text and code) is available
at the github.com/andrebianchessi/msc repository under an MIT open source
license.

In this text, references to files at the repository are written as: /software/-
filename. For example: /software/mass.h references the mass.h file, which
is under the software folder at the repository. References to specific func-
tions/methods/classes are written as function_name (/software/filename).
For example: Mass (/software/mass.h) references the Mass class definition,
which is under the software folder at the repository.

References to the source code are all hyperlinks when this document is being
read digitally (not on printed paper). Thus, accessing this document online
is highly recommended.

Read online

The thesis text is written in pandoc, and is compiled into pdf format and also
a website. The website can be accessed online at andre.how, and the pdf can
be downloaded at andre.how/thesis.pdf.
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Acronyms

• CMs Crashworthiness models. See sec. 3.1.

• COP Crashworthiness Optimization Problem. See sec. 3.2.

• DEM Discrete Element Method, i.e. a method to find the time-response
of a system comprized of ideal masses, linear springs and linear dampers
in which the equations of motion have been determined with Newton’s
second law. See sec. 3.3.

• E-GA Genetic Algorithm which calculates the quality of each candidate
solution by explicitly integrating the ODE in time.

• ETI Explicit Time Integration, i.e. numerical method for obtaining
approximate solution to time-dependent ordinary differential equation.
See sec. 3.4.

• FEM Finite Element Method.

• GA Genetic Algorithm.

• ML Machine Learning.

• ODE Ordinary Differential Equation.

• P-GA Genetic Algorithm which uses a PIM to calculate the quality of
each candidate solution.

• PIM Physics Informed Machine Learning Model.
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Motivation 1
Optimization algorithms are widely spread in all areas of modern engineering
industry. They allow for reduction of costs and increase of the efficiency
and effectiveness of solutions. The exponential growth in computational
power in recent years has made it feasible for engineers to optimize problems
they could not optimize before. Still, the complexity of the problems we
tackle increases even faster than the available computational power. Thus,
advancements in optimization techniques are also required. In this work, we
turn our attention to optimization by Genetic Algorithms (GAs) applied to
mechanical systems. These algorithms are based on principles of genetics
and evolution, and are well suited for the optimization of problems dealing
with a large amount of variables, having multiple local minima.

The caveat GA has is that it needs to constantly evaluate the fitness (i.e. ta
score of how good each possible solution is) of each candidate solution in
the population (i.e. the set of possible solutions) at every iteration. For
example: when using GA to minimize the maximum displacement a structure
suffers at a specific load condition, it is necessary to calculate the structure’s
displacement multiple times for each iteration of the algorithm. Thus, for
expensive fitness functions, the algorithm’s computational cost is proportional
to the fitness function’s cost. This might make the algorithm too expensive
if the fitness is computed, for example, using an expensive Finite Element
Model (FEM) simulation.

With this in mind, many recent studies have looked into using Machine
Learning (ML) models in conjunction with GA to increase the efficiency of
optimizations of high-cost fitness function problems. The basic idea is to train
a model which approximates the fitness function but has a much smaller
computational cost; and use it to calculate the fitness in the GA, instead of
the original fitness function. We call them metamodels because they are used
as approximations to another model, such as a FEM simulation [1]–[5].

The challenge of metamodel-based-GAs is that although metamodels can be
used for cheaper evaluation of the fitness function, it can be very expensive
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to train them; especially when they’re trained with synthetic data generated
through numerical simulations, which can be very costly depending on the
problem. So, the faster evaluation of the fitness function that they provide
might not compensate the added cost that they bring.

Physics-Based Machine Learning is a promising field of research that has been
quickly growing, and has already shown great results when used in conjunc-
tion with GAs [6], [7]. Physics-Informed Machine Learning Models (PIMs)
are Machine Learning models which are trained with physics knowledge
embedded into the loss function. This allows them to be trained without
labeled data. Thus, it’s possible to train, for example, a metamodel to a
physical problem without needing to run a numerical simulation multiple
times beforehand to obtain training data. This way, PIMs might be good can-
didates to GAs applied to problems which have expensive fitness functions.
Also, given that they’re trained without labeled data, PIMs might have good
extrapolation capabilities. This characteristic might make then perform well
even on a very large domain of possible solutions, which is exactly the cases
in which GAs excel.

In this work, we set out to analyze how much performance improvement can
be obtained for a GA applied to mechanical systems when PIMs are used.

Note that our end goal is not to assess the applicability of this technique to a
specific problem, but to further investigate the technique itself to understand
its potentials and limitations. For this reason, we only analyze Mass-Spring-
Damper Systems. Solvers for these systems have a small implementation
overhead, which allows us to spend less effort on implementing FEM solvers
for example. Besides, it’s easy to generate arbitrarily simple/complex systems
of this kind.

8 Chapter 1 Motivation



Objectives 2
This work sets out to:

1. Perform case studies of dynamic mechanical system optimization using
two approaches: P-GA and E-GA. Both are genetic algorithms, but while
E-GA evaluates the fitness of the solutions using explicit time integration
(ETI), P-GA does so by using PIMs (Physics Informed Machine Learning
Models) that describe the time response of the system as a function of
time and of the system’s properties.

2. Compare the performance and the results obtained by each method.

Some of the questions we seek to answer are:

• How well do the PIMs perform when compared to ETI (Explicit time in-
tegration)? Are they good approximators of the system’s time response?

• How big was the added cost of training the models for P-GA? Is the
added cost of training the models worth the faster evaluation time that
they provide?

• How good are the solutions found with P-GA when compared to E-GA?

9





Literature Review 3
3.1 Crashworthiness models (CMs)

Crashworthiness models (CMs) are models of vehicles used to analyze the
safety of their occupants in a crash. Fig. 3.1 shows an example. In their
simplest form, they are one-dimensional Masses-Springs-Dampers Systems,
i.e. comprised of only ideal masses, springs and dampers.

Figure 3.1: Example of Crashworthiness model. Tbl. 3.1 has the legend. Source: [8]

Table 3.1: Legend of Fig. 3.1. Source: [8]

Mass No. Vehicle components

1 Engine and Radiator
2 Suspension and Front Rails
3 Engine Cradle and Shotguns
4 Fire Wall and Part of Body on Its Back
5 Occupant

11



3.2 Crashworthiness optimization problem (COP)

A Crashworthiness optimization problem (COP) is the optimization problem
of a CM.

3.2.1 Problem Statement

Consider a mechanical system comprized of ideal masses, ideal linear springs
and ideal linear dampers, such as from fig. 3.2. (m0, m1, . . . ,mn) represent
the masses, (k0, k1, . . . ,ki) represent the elastic constants of the springs
and (c0, c1, . . . ,cj) represent the damping coefficient of the dampers. Note
that m0 is fixed, but all the others have arbitrary initial displacement and
velocities.

The optimization problem is stated as: Given the masses, the initial condi-
tions (x1(t = 0), . . . ,xn(t = 0), ẋ1(t = 0), . . . ,ẋn(t = 0)), the maximum and
minimum values of each ki and cj, and an impact duration T , find (k0,
. . . ,ki, c0, . . . ,cj) that minimize ẍn from t = 0 to t = T .

Figure 3.2: Arbitrary COP system. Source: Author
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3.3 Discrete element method

In order to explicitly integrate a mechanical system with respect to time, the
ODE that describes the system is necessary. The discrete element method
is a method to obtain the ODE for CMs.

3.3.1 Local Matrices

Fig. 3.3 shows the simplest system that contains ideal masses, springs and
dampers. The spring has its natural/relaxed length when x0 = x1 = 0.

Figure 3.3: CM of 2 masses, 1 spring and 1 damper. Source: Author

Considering that the elastic force Fk is linear with respect to the displacement
(Fk = k · x) and that the damping force Fc is linear with respect to the speed
(Fx = c · ẋ), from Newton’s second law we obtain eq. 3.1, in which ẋi and
ẍi represent the first and second time derivative of the displacement (with
respect to the springs’ relaxed position) of the mass i.

−k01 k01

k01 −k01

 x0

x1

+
−c01 c01

c01 −c01

ẋ0

ẋ1

 =
m0 0

0 m1

ẍ0

ẍ1

 (3.1)

Rewriting the above equation:

Kl

x0

x1

+ Cl

ẋ0

ẋ1

 = Ml

ẍ0

ẍ1

 (3.2)
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The matrices Kl, Cl and Ml are termed, respectively, local stiffness matrix,
local damping matrix and local mass matrix.

3.3.2 Assembling the global matrix

By adding another mass, spring and damper to fig. 3.3, we can obtain the
system at fig. 3.4.

Figure 3.4: CM of 2 masses, 2 spring and 2 dampers. Source: Author

Equations of motion of system illustrated at fig. 3.4, also obtained by New-
ton’s second law, are:


−k01 k01 0
k01 −k01−k12 k12

0 k12 −k12



x0

x1

x2



+


−c01 c01 0
c01 −c01−c12 c12

0 c12 −c12



ẋ0

ẋ1

ẋ2

 =


m0 0 0
0 m1 0
0 0 m2



ẍ0

ẍ1

ẍ2



(3.3)

By adding another mass, spring and damper connected to m1, we get the
system at fig. 3.5.
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Figure 3.5: CM of 3 masses, 3 spring and 3 dampers. Source: Author

The equations of motion of the system illustrated at fig. 3.5 are:


−k01 k01 0 0
k01 −k01 − k12−k13 k12 k13

0 k12 −k12 0
0 k13 0 −k13




x0

x1

x2

x3

+


−c01 c01 0 0
c01 −c01 − c12−c13 c12 c13

0 c12 −c12 0
0 c13 0 −c13




ẋ0

ẋ1

ẋ2

ẋ3

 =


m0 0 0 0
0 m1 0 0
0 0 m2 0
0 0 0 m3




ẍ0

ẍ1

ẍ2

ẍ3



(3.4)

By adding just an extra spring and a damper connecting m0 and m3, we get
the system at fig. 3.6.
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Figure 3.6: CM of 3 masses, 4 spring and 4 dampers. Source: Author

The equations of motion of the system illustrated at fig. 3.6 are:


−k01−k03 k01 0 k03

k01 −k01 − k12 − k13 k12 k13

0 k12 −k12 0
k03 k13 0 −k13−k03




x0

x1

x2

x3

+


−c01−c03 c01 0 c03

c01 −c01 − c12 − c13 c12 c13

0 c12 −c12 0
c03 c13 0 −c13−c03




ẋ0

ẋ1

ẋ2

ẋ3

 =


m0 0 0 0
0 m1 0 0
0 0 m2 0
0 0 0 m3




ẍ0

ẍ1

ẍ2

ẍ3



(3.5)

By looking at eqns. 3.3, 3.4, 3.5, we can see that the equations of motion
of the whole system are obtained by superposing the local matrices of each
element, shown at eq. 3.1. The local matrices that are being added are
highlighted in blue.
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This is the same process done at the Finite Element Method (FEM) to assem-
ble the global matrices from the elements’ local matrices. The reader can
find in more detail at [9], [10].

3.4 Explicit Time Integration (ETI)

The Discrete Element Method can be use to obtain a CM’s ODE, i.e. the
system’s state vector X and an expression Ẋ(X) that calculates the state
vector’s time derivative based on the current state. The ODE can then be
integrated with an explicit method such as Forward Euler. Starting with the
initial conditions, which are given, these methods recursively calculate the
state of a system at a later time based on its state at a current time.

The output of the integration is the time response of the system, i.e. the
displacement, velocity and acceleration of all the masses. This way, the
maximum acceleration that each mass will experience - which is the loss
function that is to be minimized with the COPs - can be obtained.

We can represent the state of the system with the state vector X:

X =



x0

x1
...

xn

ẋ0

ẋ1
...

ẋn
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It’s time derivative is given by:

Ẋ =



ẋ0

ẋ1
...

ẋn

ẍ0

ẍ1
...

ẍn



Notice that the first half of Ẋ is, simply, the second half of the X. Hence, we
just need to find expressions for the second derivatives of the displacements
(ẍ1, . . . , ẍn).

After assembling the global matrices, we’ll be left with a matrix equation in
the following form:

K


x0

x1
...

xn

+ C


ẋ0

ẋ1
...

ẋn

 = M


ẍ0

ẍ1
...

ẍn
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We can always multiply both sides by M−1, since M is a diagonal matrix
with strictly positive numbers in the diagonal. This way, the system’s ODE is
defined by the two following equations:

X =



x0

x1
...

xn

ẋ0

ẋ1
...

ẋn



, Ẋ =



ẋ0

ẋ1
...

ẋn

ẍ0

ẍ1
...

ẍn




ẍ0

ẍ1
...

ẍn

 = M−1

K


x0

x1
...

xn

+ C


ẋ0

ẋ1
...

ẋn





(3.6)

Note that inverting M is trivial, since it’s diagonal.

The initial conditions can then be applied directly at the Ẋ vector. For fixed
masses, for example, we just need to replace the appropriate element of Ẋ

with zero.

Example

Taking the system of fig. 3.3. Considering that the mass on the left is fixed
and the one at the right starts with a positive initial displacement:

m0 is fixed

k01 = c01 = 1
m1 = 1
x0|t=0 = x1|t=0 = 10
ẋ1|t=0 = 0

(3.7)

3.4 Explicit Time Integration (ETI) 19



The state vector for this problem is:

X =


x0

x1

ẋ0

ẋ1



By assembling the system’s global matrices (which was already done at
eq. 3.1), from eq. 3.6 we have:ẍ0

ẍ1

 =
1/m0 0

0 1/m1

−k01 k01

k01 −k01

x0

x1

+
−c01 c01

c01 −c01

ẋ0

ẋ1



Replacing the values from eq. 3.7:ẍ0

ẍ1

 =
1/m0 0

0 1

−1 1
1 −1

x0

x1

+
−1 1

1 −1

ẋ0

ẋ1


ẍ0

ẍ1

 =
1/m0(−x0 + x1 − ẋ0 + ẋ1)

x0 − x1 + ẋ0 − ẋ1


Since we considered m0 to be fixed, we replace the expression of ẍ0 with 0:

ẍ0

ẍ1

 =
 0
x0 − x1 + ẋ0 − ẋ1


Thus, the ODE is defined as:

X =


x0

x1

ẋ0

ẋ1

 and Ẋ =


ẋ0

ẋ1

0
x0 − x1 + ẋ0 − ẋ1



If the ODE were to be integrated with a simple Forward Euler using a 0.1
time-step, the first time-step would be:

• t = 0 (initial values taken from eq. 3.7)
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X|t=0 =


0
10
0
0



Ẋ =


ẋ0

ẋ1

0
x0 − x1 + ẋ0 − ẋ1

 → Ẋ|t0 =


0
0
0

−10


• t = 0.1

X|t=0.1 = X|t=0 + 0.1 · Ẋ|t0 =


0
10
0
0

+ 0.1


0
0
0

−10



X|t=0.1 =


0
10
0

−1



3.4.1 Software

See sec. 4.7 for how we implemented explicit time integration of CMs.

3.5 Genetic Algorithm

The genetic algorithm is an optimization and search technique based on the
principles of genetics and natural selection [11]. Some of its advantages, when
compared to gradient base methods, are [11]:

• Doesn’t require derivative information
• Simultaneously searches from a wide sampling of the cost surface
• Deals with a large number of variables
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• Is well suited for parallel computers
• Optimizes variables with extremely complex cost surfaces (they can

jump out of local minima)

There’s no single recipe for success of GAs. Many details vary slightly between
implementations - such as the use of elitism the criteria for selecting mates
and the breeding process - but fig. 3.7 illustrates a high level overview of all
components of the Genetic Algorithm as we implemented it. In this section,
the components, as we implemented them in our code, are briefly explained
and an example involving all the steps is presented.

The main sources this section is based on are [11]–[13].

The Evolve (/software/evolution.tcc) method is the top-level-method which
executes the GA optimization. It basically performs the initial sorting of the
population, checks for convergence and successively calls the step (/soft-
ware/evolution.tcc) method, which performs one iteration of optimization of
the population.

3.5.1 GA steps

Choose DNA that represents creature

Given GA’s biological inspirations, possible solutions to the problem at hand
are often referred to as creatures. For example, if we use GA to find the
minimum value of a function f(x, y), {x, y} pairs, such as {0, 0}, {1, 0}, can
be thought of as creatures.

In GA, we must define what the DNA of our problem’s creatures is. For real-
encoded - also known as continuous - GA, which is the one we’re interested
in, the DNA is simply a vector of real numbers. So for the problem we
mentioned above in which creatures are described by pairs of x and y, we
could choose that the creatures’ DNA is simply a vector in which the first
element is the value of x and the second is the value of y. Note that we could
also choose the other order. Thus, it’s up to the user to choose how to model
the problem.

Another example: let’s say the problem at hand is that of finding values for
the springs and dampers of the system illustrated at fig. 3.6 which minimize
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the maximum acceleration m3 experiences if the whole system is traveling
with a constant speed towards the left and hits an immovable object. A
creature in this problem is a set of values of springs’ and dampers’ constants.
We can choose, for example, that the DNA that represents a creature is the
vector [k01, c01, k12, c12, k13, c13, k03, c03].

Note that when defining a DNA, we must also define what our domain is,
i.e. in what range each DNA member must be in.

Choose fitness function

In this step, we need to define a function that measures how good each
creature is, so that we can sort the population by goodness. This function
takes a creature - or more specifically its DNA - as input, and returns a real
value, i.e. a scalar.

Choose hyperparameters

Hyperparameters are top-level parameters we choose for the optimization
algorithm itself. In this case, we must choose:

• Population size
• Population survival rate
• Mutation rate

The meaning of these values will become clearer in the following example.

Create initial population

At this step, we initialize a population of random creatures.
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Sort population and remove the less fit

We begin this step by calculating the fitness function of each creature. Then,
we sort the population by descending fitness function value. A portion,
determined by the population survival rate hyperparameter, of the less fit
population (the creatures with the lowest fitness function values) is then
removed from the population. This stage is equivalent to the survival of the
fittest in the evolutionary process.

Select mates

In this step, creatures which will mate to create offspring that will replace
the creatures which were removed at the last stage must be selected.

There are many different approaches to doing this. Some of them are
highlighted at [12], [13]. In our code, we used what’s known as Biased
Roulette Wheel Selection. In this process, two creatures are selected randomly,
but the probability of a creature being selected is proportional to how high
their fitness function value is. For more detail on how this done, we suggest
one to see getParents (/software/evolution.tcc) implementation.

Mate

In this step, two creatures which were selected in the previous step - the
parents - mate to create two new creatures : the children. Again, there are
also many different techniques for this process (see [11]). We implemented
what’s known as Radcliff blending method [11], which is as follows:

Let Dp0 and Dp1 be the DNA of the parents, and Dc0 and Dc1 be the DNA of
the children which will be created. Dx[i] corresponds to the i-th position of
x’s DNA.

For every valid index i:

1. A random variable β in the range [0, 1] is created.
2. Dc0[i] = βDp0[i] + (1 − βDp1[i])
3. Dc1[i] = βDp1[i] + (1 − βDp0[i])
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This logic is implemented at the Mate (/software/creature.cc) method.

The two created children fill the gaps in the population of the less fit creatures
which were removed at the Sort population and remove the less fit step. If
there’s only room left in the population for one creature, one of them is just
discarded.

Done mating?

If the current population size is still smaller than the population size hyperpa-
rameter, we continue with the mating process.

Mutate

At this stage, we apply random mutations to only the children which were
created (which is called elitism). Elitism guarantees that the fittest creatures
from one iteration of the algorithm are either just as fit or less fit than the
fittest ones from the next iteration of the algorithm.

We implemented uniform random mutation, which means that to perform a
mutation we do the following:

1. Pick a random child which was created
2. Choose a random position of the DNA
3. Let a and b be the minimum and maximum value acceptable for this

position at the DNA. Replace the value at that position with a random
number in the interval [a, b]

The number of mutations we perform is determined by the mutation rate
hyperparameter. For a mutation rate m, population size p, survival rate s and
the creatures’ DNA size d, the number of mutations that will be performed is
given by m · p(1 − s)d.

The idea behind this is that we allow us only to mutate the children. Thus,
there are p(1 − s) creatures that can suffer mutation. Each has d DNA slots.
Hence, there are p(1 − s)d DNA slots we can mutate. We multiply that by the
mutation rate, which is a number between 0 and 1, and get the number of
DNA slots we’ll mutate.

This logic is implemented at the mutate (/software/evolution.tcc) method.
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Continue?

Whenever we reach this stage, we consider to have finished a generation. We
now choose to stop if the algorithm has converged, i.e. the value of the fitness
function of the fittest creatures is practically the same it was on the previous
generation, or if too many generations have been tried but the algorithm still
hasn’t converged.
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Summary

Figure 3.7: GA flowchart. Source: Author
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3.5.2 GA steps illustrative example

Suppose we want to find the value of {x, y} in the region x ∈ [−2, 2] and
y ∈ [−2, 2] that minimizes the function

f(x, y) = x2 + y2 + 2x + y

Choose DNA that represents creature

The creatures of this problem are pairs {x, y}, so we can choose the DNA of
each creature to be the vector [x, y]

Choose fitness function

Instead of defining a fitness function, in this case we’ll define a loss function
for simplicity. The only difference between the two is that low values of
loss indicate good solutions, whereas high values of fitness indicate good
solutions.

Since we want to minimize f , the loss function for a creature with DNA
[xc, yc] can simply be:

loss(xc, yc) = x2
c + y2

c + 2xc + yc

The lowest the value of loss, the better the candidate solution is.

Choose hyperparameters

Since this is just an illustrative example, we chose:

• Population size = 4
• Population survival rate = 0.5 = 50%
• Mutation rate = 0.25

Note that outside illustrative examples the population sizes are usually much
higher and the mutation rates are usually much smaller.
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Create initial population

By picking random numbers between −2 and 2 we obtained the following
population:

[[0.4, 0.16], [−0.9, 0.2], [−0.2, 0.2], [0.1, −0.1]] (3.8)

Sort population and remove the less fit

The loss function calculated for each creature at eq. 3.8 has the following
values:

[1.1456, −0.75, −0.12, 0.12]

Thus, the sorted population (from smallest to largest loss) becomes:

[[−0.9, 0.2], [−0.2, 0.2], [0.1, −0.1], [0.4, 0.16]]

With a survival rate of 50%, we get:

[[−0.9, 0.2], [−0.2, 0.2]]

Select mates

In this case, since there are only 2 creatures, we have no choice but to
select them as parents. However, the roulette wheel algorithm, which is
implemented at the getParents (/software/evolution.tcc) method would be
as follows:

First we transform the loss value so that they’re strictly positive and high
values indicate goodness. We can do that by adding 1.75 to all the values,
and then taking the inverse of the value:

[−0.75, −0.12] → [1, 1.63] → [1, 0.61]
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We then normalize the values:

[1, 0.61] → [0.62, 0.38]

Lastly, we accumulate the values, so that they’re always growing.

[0.62, 0.38] → [0.62, 1]

Now, to select a parent we create a random number between 0 and 1. If the
random number is <= 0.62, we select the first creature as parent. Else, we
select the second. We then pick another random number to choose the other
parent. In cases when the same parent is selected twice by chance, we take
the next parent.

Mate

For the random number β = 0.1, the DNAs of the children would be:

[0.1 · (−0.9) + (1 − 0.1) · (−0.2), 0.1 · (0.2) + (1 − 0.1) · (0.2)] = [−0.27, 0.2]
[0.1 · (−0.2) + (1 − 0.1) · (−0.9), 0.1 · (0.2) + (1 − 0.1) · (0.2)] = [−0.83, 0.2]

After adding them to the population we get:

[[−0.9, 0.2], [−0.2, 0.2], [−0.27, 0.2], [−0.83, 0.2]]

Mutate

Two children were created. They each have 2 DNA slots. Thus, there are, in
total, 4 DNA slots which can suffer mutation. A mutation rate of 25% means
we’ll mutate 1 DNA slot.

To perform the mutations we first pick a random child. Then, we pick a
random DNA index, and replace the value there with a random one between
−2 and 2.

For example, with the following events:
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1. First child was randomly selected
2. Second DNA index was randomly selected
3. 0.7 was randomly selected in the range [-2,2]

The final population becomes:

[[−0.9, 0.2], [−0.2, 0.2], [−0.27, 0.7], [−0.83, 0.2]]

3.5.3 Software

See sec. 4.8 for how we implemented GA optimization of CMs to solve
COPs.

3.6 ML-Model-Based-Genetic-Algorithm for Mechanical
Optimization

[1], [3], [4] are among the main sources of inspiration for this work. They
all studied the use of metamodels in conjunction with Genetic Algorithm
for optimization of materials/solid structures in a vast design space, and
were very successful. The metamodels used provided a very significant
improvement in performance, and the obtained solutions were very efficient.
[5] studied using metamodels to predict the behavior of highly non-linear
3D lattice structure.

All the studies mentioned above had to go through a very computationally
expensive process of generating labeled data and training the metamodels.

[6], [7] have studied PIMs, which can be trained without labeled data. These
models make it possible to bypass the stage of training data generation. This
led us to wonder if PIMs might be the ideal metamodels for metamodel-
based-GAs. However, we didn’t find in the literature studies which combine
PIMs with GAs.
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3.7 Physics-Informed Machine Learning

We start by explaining the basic concepts of Machine Learning, and then
show how the same ideas, with some small modifications, are applied to
solve problems which are described by partial differential equations.

The problems we choose to solve are very simple, but they’re great for
illustrating the basic principles.

3.7.1 Introduction to Machine Learning

Consider the data in tbl. 3.2.

Table 3.2: Example dataset

t y

10 1.0
20 2.1
30 3.0

Let’s say we want to model the relationship between x and y in a linear
model in the form ȳ(t) = at + b, where a and b are real constants. This would
allow us to approximate the values of y for values of x other than the ones
we have in our dataset. Note that the model we choose is arbitrary. We could
pick any other much more complicated model of higher order, but we’ll stick
to this linear one because the principles are the same.

For example, a possible model would be ȳ(t) = 2t + 5. That would, however,
be terrible to model our data, as the difference between the model and the
real values are very big. Hence, we want to find values of a and b that cause
our model to make predictions close to the real values. Ideally, we’d want
ȳ(ti) = yi for all ti from tbl. 3.2. An expression that we can use to measure
how well our model fits to the data is to calculate the sum of the square of
the residues:

R =
∑
ti

(ȳ(ti) − yi)2 = (ȳ(10) − y0)2 + (ȳ(20) − y1)2 + (ȳ(30) − y2)2
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We take the square of the residues so that residues of opposite signs do not
cancel each other out. This is equivalent to taking the absolute value of the
residue, but much more mathematically convenient.

Replacing the definition of ȳ and the yi values from tbl. 3.2:

R = (10a + b − 1)2 + (20a + b − 2.1)2 + (30a + b − 3.0)2

From now on, our problem becomes finding values of a and b that minimize
R.

We can find those values with the gradient descent method. Since we can
calculate the derivatives of R with respect to a and b, we can also calculate its
gradient, which can be thought of as a vector in the a, b plane which points
in the direction in which R increases the most:

∇R =
∂R

∂a
∂R
∂b

 =
2800a + 120b − 284

120a + 6b − 12.2


The basic idea in the gradient descent method is to start with random a and
b values, and make successive steps in the opposite direction of the gradient.
The code listing bellow, written in python, exemplifies how gradient descent
can be performed:

1 def grad(a,b):
2 return (2800* a + 120*b - 284, 120*a + 6*b - 12.2)
3
4 a = 1
5 b = 1
6 l = 0.00001
7 for i in range (10000000):
8 g = grad(a,b)
9 a = a - l*g[0]

10 b = b - l*g[1]
11
12 print(a,b)

The listing above outputs a = 0.0999 and b = 0.0333, which is, up to numeri-
cal precision, exactly like the analytical solution.

Thus, we find that our model has the following expression, which yields
results very close to tbl. 3.2:
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ȳ(t) = 0.099t + 0.033

Since we’re just using an example to illustrate the principles of ML, we chose
a very simple model, with a single input, and very few data points. However,
the general workflow is the same for real like applications:

1. Define a model
2. Choose loss function that has the model’s parameters (in our example

those were just a and b) as arguments, and measures, using the data we
have available, how well our model’s predictions match the expected
outputs

3. Minimize the loss function to find the optimal parameters for the model

3.7.2 Introduction to Physics-Informed Machine Learning

What if instead of having values for t and y, we had an expression for ÿ, the
second time derivative of y? For example: Consider a ball that is thrown
upwards with an initial velocity of 10m/s. With y as the height of the ball
and considering 10m/s2 as gravity’s acceleration, the physical equation that
governs this motion is:

ÿ = −10 (3.9)

We can solve this problem in the same way as we did the previous one by
just doing some modifications. First, we must define the model we want to
use to approximate y. Let ȳ(t) be the model, given by:

ȳ(t) = a · t2 + b · t + c (3.10)

We chose this because we can then compare the solution we obtain with the
analytical solution y(t) = −5t2 + 10t.

The next step is to define a loss function. In this case, we only have value for
y at t = 0 (considering that the ball starts at position y = 0). We also have
value for the first derivative of y at t = 0, which is the initial speed. For all
other instants of time, we only know the second derivative of y from eq. 3.9.
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To write a loss function, we can first define multiple values of t which are
of interest. Then, the loss function can calculate the residues for y and ẏ at
t = 0, and for ÿ for all other time instants:

Let t = [0, 0.1, 0.2, ..., 1.0]. The loss function R is given by:

R = (ȳ(0) − y|t=0)2 + ( ˙̄y(0) − ẏ|t=0)2 +
10∑

i=0
(¨̄y(0.1i) − ÿ)2

Note that we can use this technique because we chose what we want the
model ȳ to be like; so we can easily calculate its time derivative. Replacing
ȳ(t) with its definition from eq. 3.10, y|t=0 with 0 and ẏ|t=0 with 10 (the initial
velocity), we get:

R = (c − 0)2 + (b − 10)2 +
10∑

i=0
(2a + 10)2

All we’re left to do now is to find the values of a, b and c that minimize R.
The gradient of R is given by:

∇R =


∑10

i=0 4(2a + 10)
2(b − 10)

2c



A simple python script that can be used to perform gradient descent is the
following:

1 nT = 10
2
3 def grad(a,b,c):
4 ga = 0
5 for i in range (nT +1):
6 t = 1/nT*i
7 ga += 4*(2*a+10)
8
9 gb = 2*(b -10)

10
11 gc = 2*c
12
13 return (ga ,gb ,gc)
14
15 a = 0
16 b = 0
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17 c = 0
18 l = 0.0001
19 for i in range (100000):
20 g = grad(a,b,c)
21 a = a - l*g[0]
22 b = b - l*g[1]
23 c = c - l*g[2]
24 print(a,b,c)

The output of the above script is -4.9999 9.9999 0.0 which is, up to numerical
precision, exactly like the analytical solution.

[14] is an excellent source that covers, in great depth and breadth, the
fundamentals of physics based models and the usage of more sophisticated
models such as deep neural networks.
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Methods 4
4.1 Overview

The method used to achieve the objectives listed at sec. 2 was to implement
a library that is capable of:

1. Defining arbitrary COPs.

2. Solving COPs with either P-GA or E-GA:

• E-GA evaluates candidate solutions using explicit time integration (see
sec. 3.4).

• P-GA evaluates candidate solutions using PIMs which describe the posi-
tion of each mass as a function of time and of the values of the springs
and dampers of the system. The PIMs used are linear regression models
(see sec. 4.2).

Using this library, we performed a few COP case studies using both P-GA and
E-GA. The performance and the result of each algorithm were then compared.
Performance of each algorithm was measured by the total processing time
needed for the optimization to finish. We compared the results by comparing
the maximum acceleration the mass would experience with the optimal
solution found by the algorithm.

4.2 Polynomial Models

The PIMs we used in this work are based on linear regression models. The
expression of the models is defined by the number of springs/dampers of
the CM we’re trying to optimized, and by the order of the polynomials. The
order defines the highest order of the monomials.

For an order h, the models have the following expression:
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ph(t, k1, k2, ..., ki, c1, c2, ..., cj) =
λ=h∑
λ=0

aµtλ+
∑
Z

aµtηkγ1
1 kγ2

2 ...kγi
i cω1

1 cω2
2 ...c

ωj

j

Z = {1 <= η < h, (γi = 0 OR γi = 1),
(ωj = 0 OR ωj = 1),
(∑ γi +∑

ωj = 1)}
(4.1)

In plain english, that means that the polynomial is a linear combination of:

• All the powers of t from 0 to h

• Cross product of [th−1, ..., t2, t] and [k1, ..., ki, c1, ..., cj]

For example, let’s consider a CM with 2 springs and 1 damper. Following are
the expression that the models would take:

p0(t, k1, k2, c1) = a0

p1(t, k1, k2, c1) = a0 + a1t

p2(t, k1, k2, c1) = a0 + a1t + a2t
2 + a3tk1 + a4tk2 + a5tc1

p3(t, k1, k2, c1) = a0+a1t+a2t
2+a3t

3+a4t
2k1+a5t

2k2+a6t
2c1+a7tk1+a8tk2+a9tc1

4.2.1 Reasoning behind the models’ architecture

The goal of this project was not to determine optimal model to represent the
dynamic response of CMs; but rather just to analyze the P-GA approach as a
whole.

The models defined by eq. 4.1 are convenient for many reasons:

• Their gradients are easy to compute since they’re are linear.
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• For a given problem, the whole model architecture is defined by a
single parameter (the order) of the models. This makes it super easy to
increase/decrease the model complexity when needed.

• Implementing differentiation and linear combinations of polynomial
models is relatively easy to implement when compared to other models
such as Neural Networks.

Note that the architecture of the models have a significantly strong assump-
tion behind them: the largest order of t is always larger than the order of the
other input variables (ki and cj). This characteristic is very much by design,
because we know that the dynamic response of the CMs are usually not
linear with respect to time. Still, the training of the models should be able to
identify which monomials are more significant to model the systems.

Of course, an immediate opportunity of further research is to use different
models and analyze how that changes the performance of P-GAs.

4.2.2 Automatic differentiation and linear combination

As it is thoroughly described in sec. 4.3, differentiating the models with
respect to time and linearly combining them are two tasks that are required
to build the loss function used to train the models.

As can be seen in /software/polynomial.cc, the classes implemented for
representation/manipulation of polynomial models support automatic dif-
ferentiation and the operators of polynomial instances Poly and Polys (/soft-
ware/polynomial.cc) have been implemented so that they can be linearly
combined even through matrix multiplications (see this test for example).

Side note

The /software/polynomial.cc implementation is one of the intermediary tasks
of this project the author found the most challenging and interesting.
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4.2.3 Software

/software/polynomial.h contains all the code related to the polynomial
models. The Poly (/software/polynomial.h) class defines a single instance
of a polynomial, and the Polys (/software/polynomial.h) class handles the
linear combination of Poly instances.

As usual, /software/polynomial_test.cc contains tests which serve as docu-
mentation and usage examples.

4.3 Physics-Informed Machine Learning Models (PIMs)

4.3.1 Architecture of the models

As seen in sec. 3.7, Physics-Informed Machine Learning Models are trained so
that they approximate the solution to a differential equation. In this work,
we’re dealing not with one, but with a system of differential equations that
describe the COP.

Consider an arbitrary COP of n masses. As seen in sec. 3.4, the n equations
that describe the system, as obtained with the Discrete element method, have
the following form:


ẍ0

ẍ1
...

ẍn

 = M−1

K


x0

x1
...

xn

+ C


ẋ0

ẋ1
...

ẋn



 (4.2)

To use Physics-Informed Machine Learning Models for this problem, our ap-
proach was to have one model per mass that approximates the displace-
ment (xn) of each mass as a function of time (t) and of the constants
of the springs and dampers (k0, · · · , ki, c0, · · · , cj). I.e. for a system of
n masses, i springs and j dampers, we defined the polynomial models
P0(t, k0, · · · , ki, c0, · · · , cj), · · · , Pn(t, k0, · · · , ki, c0, · · · , cj) so that P0 models
x0, P1 models x1, etc.
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Note that the models can easily be differentiated with respect to time so that
we can obtain the velocity and acceleration of each mass. The order of the
polynomials was a hyperparameter chosen for the experiments (see sec. 4.9
for more details).

4.3.2 Time discretization

Given that the time responses of the CMs are usually very non-linear with
respect to time (see fig. 4.1 for example), using a model that describes the
displacement of a mass for the whole duration of the impact would not be
efficient. The model would need to have a very high order, which can make
the training very slow.

To solve that, the approach we took was to discretize the time into multiple
“buckets”. TimeDiscretization is defined as the number of buckets into which
the total time of interest is split. Let’s say we want models that describe a
COP from t = 0 to t = T . Instead of having a set of models (one for each
mass) that describes the displacement of each mass as a function of time
from t = 0 to t = T , we created a set of models (one for each mass) that
describe the displacement of the masses from t = 0 to t = T0, then another
set of models for t = T0 to t = T1, and so on until a set of models for t = Ti to
t = T . TimeDiscretization is a hyperparameter chosen for the experiments
(see sec. 4.9 for more details).

To train those models, we start by training the first set of models - they
describe the displacement of the masses from t = 0 to t = T0. Let’s call these
the t0 models. The initial conditions (the displacement and velocity of each
mass) are given by the COP statement. Then, to train the next set of models -
the t1 models - we used the t0 models to find the conditions (displacement
and velocity of each mass) at t = T0. These conditions are considered initial
conditions for the next set of models. This process continues until all the ti

models are trained. At the end of this process, we have a set of models for
each “time bucket”. See Pimodels::Train (/software/pimodel.cc) for more
detail.

Note that the models have as input not only the time, but also the values of the
springs and dampers. When using a “previous” set of models to determine the
initial conditions to train the “next” set of models, we choose the intermediary
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values for the springs and dampers. I.e. for every spring/damper that can
have values from a to b, we used (a + b)/2 to evaluate the models.

4.3.3 Normalization

Normalizing the inputs to the models can yield faster training [15, p. 365].
Thus, the input to all models were the normalized values from 0 to 1. For
the springs, 0 corresponded to minimum possible value of the springs elastic
constant and 1 to the maximum. The analogous was used for the dampers.
For time, 0 corresponded to the start of the impact and 1 to the end of the
impact (t=T). A linear normalization was used.

4.3.4 Training: Minimizing the loss function

As described in sec. 4.3.2, the total time of the COP is discretized and,
progressively, one set of models is trained for each “time bucket”.

Initially, all the models are created with all the coefficients equal to zero;
i.e. all the polynomial coefficients are 0. They are then trained, with Stochas-
tic Gradient Descent [15, p. 184], to minimize a loss function. Following
the usual formulation of Physics Informed Machine learning [14], the loss
function is composed of 3 parts:

• Lx: Initial displacement loss

• Lẋ: Initial velocity loss

• Lẍ: Physics loss

Lx measures how well the models estimate the initial displacement of the
masses. Lẋ measures how well the models estimate the initial velocity of the
masses. Lẍ measures how well the models obey the physics, i.e. how well
the fit the COP’s ODE (eq. 4.2).

For the following text, consider that s:

s = k0norm, ..., kinorm, c0norm, ..., cjnorm (4.3)
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represents a set of springs and dampers that define a solution to a COP.
The norm subscript indicates that the values are normalized considering the
maximum and minimum possible values of each spring and damper (see
sec. 4.3.3). As an example, let’s consider a COP comprized of two masses
connected by a spring of elastic constant k0 and a damper with damping
coefficient c0. The spring can have values from 10 to 20, and the damper can
have values from 50 to 100. s = {0, 0.5} represents a system with k0 = 10
and c0 = 75.

In our chosen approach, we want the models to not only be a function of time,
but also of the system’s parameters (the springs and the dampers). Thus,
we want the minimization of the losses to force the models to work well for
multiple values of springs and dampers. We achieved that by computing the
losses for multiple possible values of the springs and dampers as follows:

We start by defining a InitialConditionsTrainingSize. Let’s call that α for
now. We define a random set S of size α that contains random values of s

(see eq. 4.3):

S = {s1, s2, ..., sα}

For a COP of n masses, let Pi indicate the model of the mass i (see sec. 4.3.1),
Lx is then defined as:

Lx =
n∑

i=1

α∑
j=1

(Pi(t = 0, sj) − xi|t=0)2 (4.4)

In plain english, that equation is read as: Sum of the squared error of the
model’s predicted displacement and the actual displacement at t = 0, for all
the masses using all the random values of springs and dampers we randomly
picked.

Note that the xi|t=0 are the initial conditions of each mass, which are part of
the COP definition.

The definition of Lẋ is analogous, but for the initial velocities:

Lẋ =
n∑

i=1

α∑
j=1

(Ṗi(t = 0, sj) − ẋi|t=0)2 (4.5)
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Just note that Ṗi is the derivative of the model with respect to the unnormal-
ized time. See sec. 4.3.4.1 for more details.

eq. 4.2 is the ODE that the ẍi must satisfy. This equation provides all the
accelerations as a function of the springs, dampers, and of the displacement
and velocities of all masses:

ẍi = Fi(x0, x1, · · · , xn, ẋ0, ẋ1, · · · , ẋi, k0, k1, · · · , c0, c1, · · · ) (4.6)

We want the models to fit eq. 4.6 not only for t = 0, but for all the interval of
the COP. Consider that st:

st = tnorm, k0norm, ..., kinorm, c0norm, ..., cjnorm (4.7)

represents a set of springs and dampers that define a solution to a COP and
a time from 0 to 1. This is basically the same definition of eq. 4.3, but with
time also as an argument. Similarly to how we built the other losses, we must
define a PhysicsTrainingSize. Let’s call that ζ for now. We define a set St of
size ζ that contains random values of st (see eq. 4.7):

St = {st1, ..., stζ}

The physics loss function is then defined as:

Lẍ =
n∑

i=1

ζ∑
j=1

(P̈i(stj) − Fi(P0(stj), P1(stj), · · · , Ṗ0(stj), Ṗ1(stj), · · · , stj))2

(4.8)

That equation is basically the sum of the errors of the second derivative
of the model and what that second derivative should be according to the
system’s ODE. Since the ODE expects the displacements and velocities of all
the masses, we use the models themselves as estimators for those.

The total loss that we want to minimize is simply the sum of all losses:

L = Lx + Lẋ + Lẍ (4.9)
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4.3.4.1 Change of variables for the time derivatives

The first element of the residue from eq. 4.8 - P̈i(stj) - is a second derivative
of the model with respect to time. As explained in sec. 4.3.3, the input of the
model is not the actual time but rather the normalized time (from 0 to 1). To
clearly distinguish those two, in this section Tg represents the global time,
and Tl represents the local time, which is normalized from 0 to 1. Using that
notation, eq. 4.8 becomes:

Lẍ =
n∑

i=1

ζ∑
j=1

(
d2Pi

dT 2
g

(stj) − Fi

(
P0(stj), P1(stj), · · · ,

dP0

dTg

(stj),
dP1

dTg

(stj), · · · , stj

))2

For more clarity, let’s turn our attention to the residue that is being summed:

d2Pi

dT 2
g

(stj) − Fi

(
P0(stj), P1(stj), · · · ,

dP0

dTg

(stj),
dP1

dTg

(stj), · · · , stj

)

With the chain rule, that becomes:(
dTl

dTg

)2
d2Pi

dT 2
l

(stj)−Fi

(
P0(stj), P1(stj), · · · ,

dTl

dTg

dP0

dTl

(stj),
dTl

dTg

dP1

dTl

(stj), · · · , stj

)

As we use a more refined TimeDiscretization, the dTl/dTg term increases. For
example, let’s say we’re considering a total impact duration of 0.05 seconds,
and using a TimeDiscretization of 10 (i.e. 10 time buckets). In this case
we’ll first train a set of models for Tg = 0 to Tg = 0.005; then another set of
models from Tg = 0.005 to Tg = 0.010 and so on. For the first set of models,
Tl = 200 · Tg, so dTl/dTg = 200. That derivative is the same for all other set
of models.

Thus, it’s easy to see that (dTl/dTg)2 rapidly increases as we discretize the
time. This causes the values and gradients of Lẍ to “blow up”, which makes
the training process take longer.

Therefore, it’s convenient to rewrite the residue as follows:
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(
dTl

dTg

)2 (
d2Pi

dT 2
l

(stj) −
(

dTg

dTl

)2

Fi

(
P0(stj), P1(stj), · · · ,

dTl

dTg

dP0

dTl

(stj),
dTl

dTg

dP1

dTl

(stj), · · · , stj

))

In Stochastic Gradient Descent, only one of the loss terms is evaluated at
a time; and the gradient of that loss term is used to update the parameter
of the models. Since that gradient is scaled anyway, we can disconsider the
(dTl/dTg)2 term when computing the gradient.

This alternative formulation contains the (dTg/dTl)2, which will decrease
rapidly as we use higher time discretization. Still, in the experiments we
analyzed we saw that this formulation behaves much better numerically than
the former one.

To summarize, the physics loss can be expressed as:

Lẍ =
n∑

i=1

ζ∑
j=1

d2Pi

dT 2
l

(stj) −
(

dTg

dTl

)2

Fi

(
P0(stj), P1(stj), · · · ,

dTl

dTg

dP0

dTl

(stj),
dTl

dTg

dP1

dTl

(stj), · · · , stj

)
(4.10)

The dPi/dTl derivatives are easy to compute because they’re simple differ-
entiations of polynomials, and the dTl/dTg is also trivially computed simply
with the expression that normalizes the time. The Fi is basically a linear
combination of models. For these reasons, the automatic differentiation and
linear combination of models was necessary (see sec. 4.2.2).

4.3.5 Example: Putting it all together

To further clarify all the sec. 4.3 subsections, lets look at a simple example
and go through all the steps.

Let’s consider a COP comprized of two masses m0 and m1, both of 1kg. m0 is
fixed, and m1 has an initial displacement of 9.75 and an initial speed of 1.12.
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There’s a spring and a damper connecting the two masses. Both the spring
and the damper can have values from 10 to 100. The impact duration is of 1
second. Our goal is to find optimal values of the spring and of the damper
that will minimize the maximum acceleration that m1 will suffer.

First, we need to define the TimeDiscretization; Let’s consider
TimeDiscretization = 2. In that case, we’ll have 4 models in total:

• P00: Describe the displacement of m0 from T = 0 to T = 0.5
• P01: Describe the displacement of m1 from T = 0 to T = 0.5
• P10: Describe the displacement of m0 from T = 0.5 to T = 1
• P11: Describe the displacement of m1 from T = 0.5 to T = 1

We’ll first train P00 and P01 using the initial conditions, and only then train
P10 and P11 using P00 and P01 to find the “initial conditions”.

Now let’s define the order of the polynomial models. For simplicity, let’s use
2. From sec. 4.3.1, we have:

P00(t, k, c) = a0 + a1t + a2t
2 + a3tk + a4tc (4.11)

P01(t, k, c) = a5 + a6t + a7t
2 + a8tk + a9tc (4.12)

t is the normalized time, k is the normalized constant of the spring and c is
the normalized constant of the damper.

We now need to choose the InitialConditionsTrainingSize and the Physic-
sTrainingSize. For simplicity let’s use 2 to both of those. Now we create
the random data points at which the loss function will be evaluated. These
values should be drawn from a uniform random distribution, but let’s as-
sume the following values were picked: S = {{0.1, 0.2}, {0.3, 0.4}} and
St = {{0.5, 0.6, 0.7}, {0.8, 0.9, 1.0}}. Note that they’re all in the [0, 1] interval
because the inputs to the models are all normalized.

The initial condition losses are:
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Lx =(P00(t = 0, k = 0.1, c = 0.2) − x0|t=0)2+
(P01(t = 0, k = 0.1, c = 0.2) − x1|t=0)2+
(P00(t = 0, k = 0.3, c = 0.4) − x0|t=0)2+
(P01(t = 0, k = 0.3, c = 0.4) − x1|t=0)2

Lx =(P00(t = 0, k = 0.1, c = 0.2) − 0.0)2+
(P01(t = 0, k = 0.1, c = 0.2) − 9.75)2+
(P00(t = 0, k = 0.3, c = 0.4) − 0.0)2+
(P01(t = 0, k = 0.3, c = 0.4) − 9.75)2

By substituting eq. 4.11 and eq. 4.12:

Lx = (a0)2 + (a1 − 9.75)2 + (a0)2 + (a1 − 9.75)2 (4.13)

To compute Lẋ, we must differentiate the models from eq. 4.11 and eq. 4.12
with respect to time. The input to the models is the normalized time, so we
need to apply the chain rule to correct it. Let T be the actual time and t be
the normalized time:

t(T ) = 2T

dt

dT
= 2

dT

dt
= 1/2

(4.14)

Note that for t(0) = 0 and t(0.5) = 1.

Ṗ00(t, k, c) = dP00

dT
(t, k, c) = dt

dT

dP00

dt
(t, k, c) = 2 d

dt
(a0+a1t+a2t

2+a3tk+a4tc)

Ṗ00(t, k, c) = 2(a1 + 2a2t + a3k + a4c) (4.15)

Ṗ01(t, k, c) = 2(a6 + 2a7t + a8k + a9c) (4.16)
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The loss for the initial velocities then becomes:

Lẋ =(Ṗ00(t = 0, k = 0.1, c = 0.2) − ẋ0|t=0)2+
(Ṗ01(t = 0, k = 0.1, c = 0.2) − ẋ1|t=0)2+
(Ṗ00(t = 0, k = 0.3, c = 0.4) − ẋ0|t=0)2+
(Ṗ01(t = 0, k = 0.3, c = 0.4) − ẋ1|t=0)2

Lẋ =(Ṗ00(t = 0, k = 0.1, c = 0.2) − 0.0)2+
(Ṗ01(t = 0, k = 0.1, c = 0.2) − 1.12)2+
(Ṗ00(t = 0, k = 0.3, c = 0.4) − 0.0)2+
(Ṗ01(t = 0, k = 0.3, c = 0.4) − 1.12)2

(4.17)

Substituting eq. 4.15 and eq. 4.16 we obtain Lẋ, which is only a function of
the parameters of the models (a0, a1, · · ·).

Lastly, we need to obtain the second derivatives of the displacements using
the discrete element method. This is, naturally, only necessary for m1 because
m0 is fixed; so ẍ0 = 0. Still, it’s easier to assemble the whole matrices anyway
and just override ẍ0 to zero afterwards. For that we need the unnormalized
values of k and c:

K(k) = 10 + 90k

C(c) = 10 + 90c

ẍ0

ẍ1

 =
1/m0 1

1 1/m1

−K(k) K(k)
K(k) −K(k)

x0

x1

+
−C(c) C(c)

C(c) −C(c)

ẋ0

ẋ1



ẍ1(x0, x1, ẋ0, ẋ1, k, c) = 1/m1((10 + 90k)x0 − (10 + 90k)x1 + (10 + 90c)ẋ0 − (10 + 90c)ẋ1)
(4.18)

Aside from ẍ1 we also need the derivative of the models with respect to t:

d2P00

dt2 (t, k, c) = (2a2) (4.19)

4.3 Physics-Informed Machine Learning Models (PIMs) 49



d2P01

dt2 (t, k, c) = (2a7) (4.20)

Having eq. 4.14, eq. 4.18, eq. 4.19 and eq. 4.20, the physics loss is then
defined as:

Lẍ =
[

d2P00

dt2 (0.5, 0.6, 0.7) −
(

dT

dt

)2

· 0
]
+[

d2P01

dt2 (0.5, 0.6, 0.7)−(
dT

dt

)2

ẍ1

(
P00(0.5, 0.6, 0.7), P01(0.5, 0.6, 0.7),

dT

dt

dP00

dt
(0.5, 0.6, 0.7), dT

dt

dP01

dt
(0.5, 0.6, 0.7), 0.6, 0.7

)]
+[

d2P00

dt2 (0.8, 0.9, 1.0) −
(

dT

dt

)2

· 0
]
+[

d2P01

dt2 (0.8, 0.9, 1.0)−(
dT

dt

)2

ẍ1

(
P00(0.8, 0.9, 1.0), P01(0.8, 0.9, 1.0),

dT

dt

dP00

dt
(0.8, 0.9, 1.0), dT

dt

dP01

dt
(0.8, 0.9, 1.0), 0.8, 0.9

)]

(4.21)

eq. 4.13 define the loss function L = Lx + Lẋ + Lẍ. Since it’s only a function
of the parameters of the models (ai), we can find the values of the parameters
that minimize it using Stochastic Gradient Descent. Once that’s done, we use
re-do this process to train P10 and P11. The initial displacement and velocity
of m1 are found with P01(1.0, 0.5, 0.5) and ˙P01(1.0, 0.5, 0.5).

4.3.6 Software

Model /software/model.h defines an interface of an arbitrary ML model that
can be trained. The Train and StochasticGradientDescentStep methods are already
implemented, so classes that implement the other methods can use those
methods to train the model. See /software/model_test.cc for examples.
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Pimodel /software/pimodel.h is the class that implements a Physics In-
formed Machine Learning model as described in this section. This class
uses TimeDiscretization = 1 (see sec. 4.3.2). To use larger TimeDiscretiza-
tions, the Pimodels /software/pimodel.h class should be used. As usual,
/software/pimodel_test.cc contains examples of usage.

4.4 P-GA

P-GA is an approach to solve a COP that uses PIMs in conjunction with a
Genetic Algorithm to look for optimal solutions.

The algorithm has the following basic structure:

1 - Discretize the time domain, as defined by the TimeDiscretization hyper-
parameter. For TimeDiscretization = n, the COP’s impact duration T is split into
n “buckets”. For each bucket, a set of polynomial models is created. Each set
contains one polynomial model for each mass. The models describe the dis-
placement of the mass as a function of time and of the system properties (the
constants of the springs and of the dampers). For more detail see sec. 4.3.

2 - Train the models of each time bucket. See sec. 4.3.2 for more detail. After
this step, we have models that describe the displacement of each mass as a
function of time and of the system properties (the constants of the springs
and of the dampers). By differentiating these models twice with respect to
time, we can also obtain the acceleration of each mass.

3 - Perform a genetic-algorithm-based optimization to find the best solu-
tions. Each candidate solution is described by a set of values of springs
and dampers. To obtain the maximum acceleration the target mass will
experience, we simply evaluate the models with some (10 for example)
evenly separated time instants and get the highest acceleration. The number
of time instants we check is another hyperparameter that must be chosen:
ModelEvalDiscretization.

See /software/problem_creature.cc for the implementation.
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4.4.1 Time Complexity

After training the models

If the models have n parameters (i.e. the polynomial models have n co-
efficients), every model inference costs O(n). Since in a COP we’re only
interested in the maximum acceleration of a specific mass, we only need
to evaluate the model ModelEvalDiscretization times. However, since the
maximum acceleration can happen close to the start of the impact of close
to the end, we need to check the model of the mass of interest in all “time
buckets” (see sec. 4.3.2). Hence, the total cost to evaluate one candidate is
O(n · ModelEvalDiscretization · TimeDiscretization).

Training the models

For every step of the Stochastic Gradient Descent, the gradient of one term
of the loss function needs to be computed. The longest terms of the loss
functions are the physics residues, because they’re a linear combination of
multiple models (see sec. 4.3.4.1). In the worst case, one term can contain
all the models; hence it’s total number of parameters is m · n for a system of
m masses and models with n parameters. Since the models are linear, their
derivatives with respect to each parameter are computed with O(1). Since
computing the gradient requires the computation of all the derivatives, the
total cost of computing the gradient is m · n.

Assuming we need s steps in the Stochastic Gradient Descent until con-
vergence, the total cost to train one set of models is O(s · m · n). Given
that we train multiple sets (see sec. 4.3.2), the total cost is O(s · m · n ·
TimeDiscretization).

4.5 E-GA

E-GA is an approach to solve an COP that uses Explicit Time Integration
in conjunction with a Genetic Algorithm to look for optimal solutions. The
fitness of each solution is obtained by Explicit Time Integration (see sec. 4.7),
which provides the timeseries of accelerations of all masses.
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4.5.1 Time Complexity

For a system with m masses, the explicit time integration involves a mul-
tiplication of an m × m matrix with a vector of size m on each time step.
Thus, for t time steps the complexity of evaluation one candidate solution is
O(t · m2).

4.6 E-GA vs P-GA Time Complexity

As seen in sec. 4.4.1, for P-GA training the models has O(s · m · n ·
TimeDiscretization) time complexity. Then, evaluating each candidate
solution in the Genetic Algorithm has O(n · ModelEvalDiscretization ·
TimeDiscretization) time complexity.

As seen in sec. 4.5.1, for E-GA evaluating each candidate solution in the
Genetic Algorithm has a complexity of O(t · m2).

Thus, we see that the models can easily be much faster to evaluate than
the explicit time integration (so long as n · ModelEvalDiscretization ·
TimeDiscretization < t · m2), but the cost of their training (O(s · m · n ·
TimeDiscretization)) is definitely non-trivial and might not be worth the
faster speed in evaluating each candidate solution. The speed of the training
phase will depend on the hyperparameters used, one the models, and on the
shape of the Loss Function, so we can’t easily predict which conditions cause
P-GA to be more efficient.

It’s important to keep in mind that we can reduce the training time by “early
stopping” before the models are very fine-tuned. This will reduce the training
time, but at that point the models might not be well enough trained to be
able to properly assess the quality of each candidate solution.
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4.7 Explicit Time Integration Software

4.7.1 Implementation

The Problem (/software/problem.h) class, together with other classes it
references, encapsulates all the logic related to the dynamic simulation
of CMs using ETI. The time integration is done using the Boost library
Boost.Numeric.Odeint with the runge_kutta_dopri5 integration.

4.7.2 Usage

/software/problem_test.cc contains many examples of how the software
we implemented can be used. [8] was extensively used as reference for
implementing test cases.

Basically, we first initialize a Problem object. Then, we use the AddMass, AddSpring

and AddDampers methods to add masses, springs and dampers to the problem.
Then, the Build method must be called. The methods SetInitialDisp and
SetInitialVel can then be used to set initial displacements and velocities to
masses. Lastly, the FixMass is used to set masses as fixed, i.e. make so that they
have always zero displacement. Finally, the Integrate method can be called.

Some post processing methods available are:

• PrintMassTimeHistory, which prints to stdout the time series of one specific
mass’s displacement, speed and acceleration. This can, then, be plotted
in any csv plotting tool.

• GetMassMaxAbsAccel returns max. absolute value of acceleration of a specific
mass.

• GetMassMaxAccel returns max. value of acceleration of a specific mass.
• GetMassMinAccel returns min. value of acceleration of a specific mass.

For more details, see /software/problem.h.
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4.7.3 Example

DampedOscillatorPlotTest (/software/problem_test.cc)

1 Problem p = Problem ();
2 p. AddMass (1.0 , 0.0, 0.0);
3
4 p. AddMass (20.0 , 1.0, 0.0);
5 p. AddSpring (0, 1, 30.0);
6 p. AddDamper (0, 1, 2.9);
7 p.Build ();
8 p. FixMass (0);
9 p. SetInitialDisp (1, 1.0);

10
11 p. Integrate (40);
12
13 std :: cout << " DampedOscillatorPlotTest output :\n";
14 p. PrintMassTimeHistory (1);

Listing 4.1: Example of using Problem class to perform dynamic simulation.

Figure 4.1: Plot of output of damped oscillator simulation example. Source: Author
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4.8 Genetic Algorithm Software

4.8.1 Implementation

Evolution (/software/evolution.h) is a template class that encapsulates the
logic related to GA. Note that this template must be of a class that is a child
of the Creature (/software/creature.h) abstract class (interface).

4.8.2 Usage

Arbitrary problem

To perform an optimization using GA, the first step is to define a child class
of Creature (/software/creature.h). The only definitions required are the dna

attribute and the GetCost function. C (/software/creature_test.h) class is an
example. The creature class, in this example, represents a candidate {x, y}
pair that minimizes f(x, y) = x2 + y2 + 2x + y.

Once the child creature class is defined, an Evolution object can be instanti-
ated and used to search for optimal solutions. EvolveTest (/software/evolu-
tion_test.cc) contains an example of how that’s done.

COP

E-GA The child class for CMs is already defined at ProblemCreature (/soft-
ware/problem_creature.h). Its constructor uses an auxiliary class Prob-
lemDescription (/software/problem_description.h), which allows us to easily
describe a COP as described in sec. 3.2. The extra two parameters from
its constructor specify the mass whose maximum acceleration we want to
minimize and the length of the simulation we’ll perform. The creature’s loss
function is the maximum absolute acceleration that mass will suffer during
the dynamic simulation.

P-GA This alternative constructor receives Pimodels as dependencies. If this
constructor is used, the Pimodels are used to calculate the maximum acceler-
ation that the target mass will suffer.
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E-GA Example

EvolutionUntilConvergenceTest (/software/problem_creature_test.cc) con-
tains an example in which we find values for the springs and dampers of
system at fig. 3.1 that minimize the maximum acceleration that m5 would
suffer if the system was moving with a constant speed from right to left and
hit an immovable wall on the left. A simplified version of the code is listed
below. Note that the parameters we pass to the Evolve method determine our
stop condition and if the results should be printed to stdout. Some values of
the best solution found are listed after it, and fig. 4.2 shows how the sum of
the loss of the fittest population progresses with the generations.

1 ProblemDescription pd = ProblemDescription ();
2 pd. AddMass (1.0 , 0.0, 0.0); // m0
3 pd. AddMass (300 , 1.0, 1.0); // m1
4 pd. AddMass (120 , 1.0, 0.0); // m2
5 pd. AddMass (150 , 1.0, 3.0); // m3
6 pd. AddMass (700 , 2.0, 0.0); // m4
7 pd. AddMass (80, 3.0, 0.0); // m5
8
9 double min = 100.0;

10 double max = 100000;
11 pd. AddSpring (0, 1, min , max );
12 pd. AddSpring (1, 2, min , max );
13 pd. AddSpring (1, 3, min , max );
14 pd. AddSpring (1, 4, min , max );
15 pd. AddDamper (1, 4, min , max );
16 pd. AddSpring (0, 2, min , max );
17 pd. AddDamper (0, 2, min , max );
18 pd. AddSpring (2, 4, min , max );
19 pd. AddDamper (2, 4, min , max );
20 pd. AddSpring (0, 3, min , max );
21 pd. AddDamper (0, 3, min , max );
22 pd. AddSpring (3, 4, min , max );
23 pd. AddDamper (3, 4, min , max );
24 pd. AddSpring (4, 5, min , max );
25 pd. AddDamper (4, 5, min , max );
26
27 pd. SetFixedMass (0);
28 pd. AddInitialVel (200.0);
29
30 // Create population of 20 creatures
31 std :: vector < ProblemCreature > pop = std :: vector < ProblemCreature >();
32 for (int i = 0; i < 20; i++) {
33 pop. push_back ( ProblemCreature (&pd , 5, 0.15));
34 }
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35
36 // Find optimal solutions
37 Evolution < ProblemCreature > evolution = Evolution < ProblemCreature >(& pop );
38 double cost0 = evolution . FittestCost ();
39 auto p = evolution . Evolve (0.01 , true );
40
41 // Check values of best solution
42 Problem best = pd. BuildFromDNA ( evolution . GetCreature (0)-> dna ). val;
43 print("k1: ", best. springs [0]. Get_k ());
44 print("k2: ", best. springs [1]. Get_k ());
45 print("k3: ", best. springs [2]. Get_k ());
46 print("k4: ", best. springs [3]. Get_k ());
47 print("c4: ", best. dampers [0]. Get_c ());
48 print("k5: ", best. springs [4]. Get_k ());
49 print("c5: ", best. dampers [1]. Get_c ());

Listing 4.2: Example of how to use the code we wrote to solve COPs

Some of the values of springs and dampers of the optimal solution we found
are:

Component Value

k1 28870.3
k2 73618
k3 43417.4
k4 70919.7
c4 4957.4
k5 21287.2
c5 4957.4
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Figure 4.2: Example solution of COP with E-GA: Sum of loss function of fittest population
vs Generation. Source: Author

4.9 Experiments

Problems

To compare the E-GA and the P-GA approaches, we solved some COPs of
different complexities using each method, and then compared the results
and the performance of each. The COPs that were solved were all of fully
connected systems, i.e. made up of set of masses that are all connected to
each other with a spring and a damper. The following code shows how these
problems were constructed:

1 ProblemDescription pd = ProblemDescription ();
2 pd. AddMass (1.0 , 0.0, 0.0); // m0 is fixed
3 pd. SetFixedMass (0);
4
5 for (int i = 1; i <= nMasses ; i++) {
6 pd. AddMass ( Random (100 , 300) , i, 0);
7 }
8 double min = 100000.0;
9 double max = 300000.0;

10 for (int i = 0; i < nMasses ; i++) {
11 for (int j = i + 1; j <= nMasses ; j++) {
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12 pd. AddSpring (i, j, min , max );
13 pd. AddDamper (i, j, min , max );
14 }
15 }
16 for (int i = 1; i <= nMasses ; i++) {
17 pd. AddInitialVel (i, Random (0.0 , 200.0));
18 pd. AddInitialDisp (i, Random (0.0 , 200.0));
19 }

Note that the characteristics of the problems (the masses, the initial condi-
tions and the max/min values of the springs and dampers) are randomly
created, so for each value of nMasses from 1 to 5, 3 random problems were
solved with each approach (E-GA and P-GA), as shown in the pseudo-code
snippet bellow:

1 for (int problemId = 0; problemId < 3; problemId ++) {
2 for (int nMasses = 1; nMasses <= 5; nMasses ++) {
3 optimizeRandomProblemWithEgaAndPga ( nMasses );
4 }
5 }

See the full code and the values of all the hyperparameters at /software/ex-
periment_1.cc

4.9.1 Metrics

Both approaches (E-GA and P-GA) start with an initial pool of random guesses.
Besides both approaches, we also analyzed the results of the best of those
initial random guesses. The best random guess was determined by simply
evaluating all the initial guesses with Explicit Time Integration, since that
provides the most accurate result. To ensure a fair comparison between
the approaches, we ensured that E-GA and P-GA start with the same initial
random guesses.

To be able to compare both performance and quality of each approach, for
each problem solved a score from 0 to 100 was given to the efficiency and
quality of E-GA, P-GA and of the Best Initial Random Guess. The efficiency
was simply measured by the time the algorithm took to run. The quality was
measured by how small the maximum acceleration of the target mass was
during the impact for each solution. The acceleration was determined once
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again with the Explicit Time Integration for a fair comparison between E-GA
and P-GA.

An efficiency score of 100 means that that particular approach was the fastest
among the three. A score of 0 means that approach was the slowest. A
value in between is the result of an interpolation between the maximum and
minimum execution time. The quality score is analogous. The results are
shown in sec. 5.2.

4.9.2 Hyperparameters

A very important note is that the hyperparameters have been carefully
chosen, through experimentation an trial and error, so that the P-GA would
reach good results with a execution time comparable to the E-GA. See sec. 6
for more details.
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Results 5
5.1 PIM

5.1.1 Simple harmonic oscillator

fig. 5.1 shows the result of TrainTest /software/pimodel_test.cc, which tests
how well PIMs can approximate a solution obtained with Explicit Time
Integration. The COP for which the PIMs were trained consists on a system
of two masses attached by a spring and a damper. One of the masses is fixed
and the other has an initial displacement. The models used have order=3, and
a TimeDiscretization=8 was used.

Figure 5.1: Dynamic response of a mass-spring-damper oscillator: PIM vs ETI prediction.
Source: Author

The results show that the PIMs very closely approximate the solution
obtained by the ETI method.
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5.1.2 Larger system

fig. 5.2 shows the result of /software/pimodel_binary_test.cc. This tests is
very similar to sec. 5.1.1, but the COP at hand is much larger. It’s a system of
5 masses, 9 springs and 6 dampers. One of the masses is fixed, and all the
other ones start with an initial velocity. The models used have order=3, and a
TimeDiscretization=20 was used.

Figure 5.2: Dynamic response of the 5th mass of a system with 6 masses, 9 springs and 6
dampers: PIM vs ETI prediction. Source: Author

These results show once again that the PIMs very closely approximate the
solution obtained by the ETI method.

5.2 E-GA vs P-GA vs Random

The following table shows the Efficiency and Quality scores of the tests
performed. The first column indicates the number of non-fixed masses of
the system, and the second indicates the “id” of the experiment (3 random
COPs were solved for each number of non-fixed masses). See sec. 4.9 for
context.
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Masses Test Method Efficiency score Quality score
Mean
score

1 0 P-GA 34.3654 71.0724 52.7189
1 0 E-GA 0 100 50
1 0 Random

Guess
100 0 50

1 1 P-GA 75.6739 0 37.837
1 1 E-GA 0 100 50
1 1 Random

Guess
100 0 50

1 2 P-GA 28.472 90.0197 59.2458
1 2 E-GA 0 100 50
1 2 Random

Guess
100 0 50

2 0 P-GA 72.3782 67.4949 69.9366
2 0 E-GA 0 100 50
2 0 Random

Guess
100 0 50

2 1 P-GA 47.5716 99.0683 73.3199
2 1 E-GA 0 100 50
2 1 Random

Guess
100 0 50

2 2 P-GA 62.6595 100 81.3298
2 2 E-GA 0 98.1363 49.0681
2 2 Random

Guess
100 0 50

3 0 P-GA 78.3921 60.019 69.2055
3 0 E-GA 0 100 50
3 0 Random

Guess
100 0 50
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Masses Test Method Efficiency score Quality score
Mean
score

3 1 P-GA 67.7193 42.6812 55.2003
3 1 E-GA 0 100 50
3 1 Random

Guess
100 0 50

3 2 P-GA 79.8498 16.795 48.3224
3 2 E-GA 0 100 50
3 2 Random

Guess
100 0 50

4 0 P-GA 82.5093 0 41.2546
4 0 E-GA 0 100 50
4 0 Random

Guess
100 35.6312 67.8156

4 1 P-GA 64.3856 80.9193 72.6525
4 1 E-GA 0 100 50
4 1 Random

Guess
100 0 50

4 2 P-GA 65.827 70.105 67.966
4 2 E-GA 0 100 50
4 2 Random

Guess
100 0 50

5 0 P-GA 85.4621 27.0249 56.2435
5 0 E-GA 0 100 50
5 0 Random

Guess
100 0 50

5 1 P-GA 84.2239 23.8868 54.0554
5 1 E-GA 0 100 50
5 1 Random

Guess
100 0 50
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Masses Test Method Efficiency score Quality score
Mean
score

5 2 P-GA 44.2273 15.1486 29.6879
5 2 E-GA 0 100 50
5 2 Random

Guess
100 0 50

The results show that in many cases the P-GA can obtain solutions which
are very close or even better than the ones obtained by the E-GA; but that’s
not always the case. In some cases, P-GA can even lead to results which are
significantly worse than the E-GA ones and possibly even worse than random
guesses (see {Masses=4,Test=0}).

5.3 Conclusions

Especially given that the hyperparameters have been carefully chosen through
trial and error (see sec. 4.9.2), we can’t make broad statements about the
efficacy of the using P-GA instead of E-GA.

Still, the results do show some very promising results because we see many
cases in which the usage of Physics Informed Machine Learning Models in
the Genetic Algorithm brought results as good as the Genetic Algorithm that
performs numerical integration to evaluate the fitness of solutions; but in in
a much smaller execution time.

The results are not at all generalizable, but they definitely show a great po-
tential in using Physics Informed Machine Learning Models as solution-
fitness estimators for performance gains.
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Discussion 6
In this work, we explored the potential of Physics-Informed Machine Learn-
ing Models (PIMs) to increase the efficiency of Genetic Algorithms (GAs)
for the optimization of mechanical systems. Traditionally, these GAs use nu-
merical simulations (such as Explicit Time Integration or the Finite Element
Method) to measure the fitness of each candidate solution. These numerical
simulations can be quite expensive and become computational bottlenecks,
but - once trained - PIMs can rapidly estimate the fitness of candidates. The
training of these models is, however, not free; so at first glance it’s not easy
to say if using them is indeed efficient or not.

Our investigations revealed many cases in which PIM-enhanced GA yielded
substantial time savings when compared to the Numerical GA (which uses
Explicit Time Integration to evaluate each candidate solution). Moreover, we
saw that PIM-enhanced GAs were not only faster but also capable of producing
solutions of comparable quality, or even superior quality, to those obtained
using the Numerical GA.

In some of the experiments, however, PIM-enhanced GA led to a solution
which was worse than a random guess; so it’s not always that this method
works. Also, finding the hyperparameters which cause the models to train
fast enough while still causing them to be good-enough estimators is tricky
and very operator-dependent. Thus, we can’t argue that this is a technique
that should always replace Numerical GA.

However, it’s vital to recognize that these findings do not diminish the promise
of PIM-enhanced GAs. After all, 11 out of 15 experiments showed not only
a much smaller execution time but a larger Mean Score (the mean between
the efficiency and the quality score) for the PIM-enhanced GA, and in one
case the solution found by the PIM-enhanced GA was even better than the
one found by the Numerical GA. Some clear follow-up questions worthy of
investigation are:

• How does the performance of the technique changes with more refined
models? We only used simple linear models, so it stands to question if
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more refined models can be trained faster but reach the same inference
quality.

• How does it perform in other mechanical problems? We only analyzed
systems made up of masses springs and dampers, but the technique can
easily be applied to other problems as well.

• What are the optimal hyperparameters for the training? How do we find
them for each specific problem?

In conclusion, our work establishes a compelling case for further research
about the incorporation of Physics-Informed Machine Learning Models into
GAs to dramatically enhance optimization performance. This approach
not only holds the potential to significantly accelerate solution searches
but also to maintain or even improve solution quality, which can unlock
possibilities for tackling previously intractable problems across a multitude
of disciplines.

70 Chapter 6 Discussion



References

[1] S. Lee, Z. Zhang, and G. X. Gu, “Generative machine learning algorithm
for lattice structures with superior mechanical properties,” Mater Horiz,
vol. 9, no. 3, pp. 952–960, Mar. 2022.

[2] G. X. Gu, “Bioinspired algorithmic-driven design of additively manu-
factured composites,” PhD thesis, 2012.

[3] G. X. Gu, C.-T. Chen, and M. J. Buehler, “De novo composite design
based on machine learning algorithm,” Extreme Mechanics Letters, vol.
18, pp. 19–28, Jan. 2018.

[4] G. X. Gu, C.-T. Chen, D. J. Richmond, and M. J. Buehler, “Bioinspired
hierarchical composite design using machine learning: Simulation,
additive manufacturing, and experiment,” Materials Horizons, vol. 5,
no. 5, pp. 939–945, Aug. 2018.

[5] L. Driemeier, “On the use of AI for metamodeling: A case study of a
3D bar structure.”

[6] Z. Zhang and G. X. Gu, “Physics-informed deep learning for digital
materials,” Theoretical and Applied Mechanics Letters, vol. 11, no. 1, p.
100220, Jan. 2021.

[7] Z. Zhang, Z. Jin, and G. X. Gu, “Efficient pneumatic actuation modeling
using hybrid physics-based and data-driven framework,” Cell Reports
Physical Science, vol. 3, no. 4, p. 100842, Apr. 2022.

[8] J. A. Mostafa Marzbanrad, “A system identification algorithm for vehi-
cle lumped parameter model in crash analysis,” International Journal
of Modeling and Optimization, vol. 1, pp. 163–166, Jan. 2011.

[9] D. L. Logan, A first course in the finite element method. Thomson, 2007,
pp. 28–52.

[10] M. Alves, Impact engineering: Fundamentals, experiments and nonlinear
finite elements. Amazon Digital Services LLC - Kdp, 2020.

[11] R. L. Haupt, S. E. Haupt, and S. E. A. Haupt, Practical genetic algorithms.
Wiley, 2004.

[12] H. K. Lam, “Continuous genetic algorithm - part 1.” Youtube, Nov.
2021.

71



[13] H. K. Lam, “Continuous genetic algorithm - part 2.” Youtube, Nov.
2021.

[14] N. Thuerey, P. Holl, M. Mueller, P. Schnell, F. Trost, and K. Um, Physics-
based deep learning. WWW, 2021. Available: https://physicsbasedde
eplearning.org

[15] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:
From theory to algorithms. Cambridge University Press, 2014. doi:
10.1017/CBO9781107298019.

[16] M. T. Bhoskar, M. O. K. Kulkarni, M. N. K. Kulkarni, M. S. L. Patekar,
G. M. Kakandikar, and V. M. Nandedkar, “Genetic algorithm and its
applications to mechanical engineering: A review,” Materials Today:
Proceedings, vol. 2, no. 4, pp. 2624–2630, Jan. 2015.

[17] B. Cunha, C. Droz, A. Zine, S. Foulard, and M. Ichchou, “A review of
machine learning methods applied to structural dynamics and vibroa-
coustic,” Apr. 2022, Available: https://arxiv.org/abs/2204.06362

[18] R. G. Nascimento, K. Fricke, and F. A. C. Viana, “A tutorial on solving or-
dinary differential equations using python and hybrid physics-informed
neural network,” Eng. Appl. Artif. Intell., vol. 96, p. 103996, Nov.
2020.

72 References

https://physicsbaseddeeplearning.org
https://physicsbaseddeeplearning.org
https://doi.org/10.1017/CBO9781107298019
https://arxiv.org/abs/2204.06362

	Acknowledgments
	How to read this document
	Source Code
	Read online

	Acronyms
	Motivation
	Objectives
	Literature Review
	Crashworthiness models (CMs)
	Crashworthiness optimization problem (COP)
	Problem Statement

	Discrete element method
	Local Matrices
	Assembling the global matrix

	Explicit Time Integration (ETI)
	Software

	Genetic Algorithm
	GA steps
	GA steps illustrative example
	Software

	ML-Model-Based-Genetic-Algorithm for Mechanical Optimization
	Physics-Informed Machine Learning
	Introduction to Machine Learning
	Introduction to Physics-Informed Machine Learning


	Methods
	Overview
	Polynomial Models
	Reasoning behind the models’ architecture
	Automatic differentiation and linear combination
	Software

	Physics-Informed Machine Learning Models (PIMs)
	Architecture of the models
	Time discretization
	Normalization
	Training: Minimizing the loss function
	Example: Putting it all together
	Software

	P-GA
	Time Complexity

	E-GA
	Time Complexity

	E-GA vs P-GA Time Complexity
	Explicit Time Integration Software
	Implementation
	Usage
	Example

	Genetic Algorithm Software
	Implementation
	Usage

	Experiments
	Problems
	Metrics
	Hyperparameters


	Results
	PIM
	Simple harmonic oscillator
	Larger system

	E-GA vs P-GA vs Random
	Conclusions

	Discussion
	References

